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A CASE STUDY OF SCALING PROBLEM IN SHIP CLASSIFICATION

1. Introduction
In the domain of ship classification there are potentially hundreds of candidate tar- 0

gets that can be observed. In the past several pilot studies [Booker 1988][Musman,
Chang & Booker 1993] have demonstrated the feasibility and applicability of using
Bayesian belief networks to solve the ship classification problem. However, that work
only denonstrated small examples of how the problem can be solved. In both of the
above cases the networks compared only 10-12 target types.

Because of the large number of targets that are present in the ship classification
problem, there are potential difiulties and pitfalls which exist when trying to scale up
the example networks shown in the pilot studies to create a system which is capable of
classifying the thousands of ship targets present in the world. At the moment there are
more than 640 military combatant ship classes in the world and there are over 10,000
types of Commercial and Auxiliary craft. In our work we have focused on the task of
identifying only the combatant targets.

In order to be able to address such a large class problem we use the same coarse to 0
fine hierarchical classification techniques described by [Clancy 1984] [Chandrasekaran
1986] by defining a taxonomy for the ship classification problem. In addition to this,
because of the potential complexity problems which exist in creating belief networks
(each associated with different levels of the hierarchy), we must also ensure that the
internal structure of each network is properly designed so that it can address the scaling
issues normally associated with the addition of new target features. Examples of these
two issues will be given.

2. Overview

Ship classification involves the use of over 50 features to differentiate between tar-
get classes. As with many other classification problems, often several target classes are
very similar in appearance and additionally there can be a substantial variation of each
individual target's specifics within the same target class. This latter characteristic of the
problem is normally caused by making structural modifications or the addition of new

weaponry after a ship has been deployed.

Although there are several alternative ways in which to decompose the large prob-
lem into a hierarchical solution, we have endeavored to perform this operation in a
manner that creates partial conclusions that have an intuitive meaning to the analyst.
While it is possible (and is sometimes appropriate) to create sub-conclusions in our tax-
onomy that are defined by the separability of the features, it makes much more sense to
relate the taxonomy categories to information about the target that is indicative of its
mission or military capability. Figure 1 demonstrates the hierarchical breakdown of the
ship classification problem from detection of a target on a radar PPZ down to the target's
naval class designation.

Manuscript approved June 14, 1993.
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At the upper levels of our taxonomy we normally assign priors which reflect the fact
that each possible target class is equally likely. This allows our problem solving to detect
the target which best explains the observed evidence. Such priors are not absolute and IR
are not intended to indicate the actual frequency of occurrence of each target type in the 0

world. Additionally, our priors are not considered to be firm and fixed. Instead they are
expected to be tailored to match each specific mission scenario based on the effects of
prior intelligence and other activity associated with the area of the world being analyzed
(i.e., in the Mediterranean you are less likely to come across a Chinese ship, or a specific
class of targets may be known to be in port and under repair). These "prior" values are
expected to be calculated using a separate belief network that is designed to fuse such
information from diverse intelligence reports.

Belief networks are associated with each level of the taxonomy hierarchy. Each net-
work uses appropriate features to attempt to differentiate between the hypotheses at that
level. If the observed evidence can differentiate between the candidate hypotheses at the
given level of the taxonomy then the problem solving continues by loading a network
associated with the next more specific level of the taxonomy. But, if the evidence yields
an inconclusive result then the problem solving is suspended and the most specific result
obtained from the taxonomy is returned to the user. This approach is described in more
detail in [Musman, Chang & Booker 1993].

As a result of having many different networks associated with solving the problem,
it is necessary to construct the networks to be modular. This will allow us to use the
results from one network as a single piece of evidence in another network, or will allow
us to use the results of one network as priors in another network. This approach has
advantages and disadvantages. An advantage of this approach is that the networks loaded
into memory tend to be smaller and simpler than networks which address the whole prob-
lem. As a result it is possible to use dynamically computed measures of informativeness
to efficiently order the acquisition of evidence [Pearl 1989][Musman, Chang & Booker
1993]. Some properties of informativeness measure are shown in Appendix 1. The pri-
mary disadvantage of this modular approach is that the use of such informativeness
measures is restricted to the single smaller networks. Thus, the ability to change the focus
of attention is much more limited than it could be. There is a trade-off in flexibility vs
computation, that must be considered when creating the network modules.

As a result of the large number of targets which must be modeled by our belief net-
works, if one were to build a network (or network modules) which compare each target
to each other target type, there would be a large amount of duplicate structure within the
network associated with the fact that the targets are built of essentially similar com-
ponents (i.e. all targets have superstructure mounted on the deck, etc.). This means that
every time a target is added or deleted from such a network it is necessary to add or
delete all of the supporting "structural" links associated with that target. This makes such
a network much harder to maintain (Figure 2).

2
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To circumvent the above problem, we have chosen to utilize the fact that all ship
targets have essentially the same structural makeup. Thus, the main difference between
the targets is found in the details about how the features appear on the targets' com-
ponents, and is not due to the fact that some targets have different components than oth-
ers (i.e., all targets have both superstructure and masts but the shapes of these features
are different). By using this constraint, it is possible to create a single network which
represents the structural makeup of a target (Figure 3). We then use this network by
adding evidence which indicates the errors between the observed evidence and a single
specific target.

In order to use the network shown in Figure 3 it is necessary to re-instantiate the
network for each known target type by adding evidence which represents a measure of
the error between the observed evidence and the expected description for each specific
target. Thus, evidence is added to the network comparing the observations to targetl, the
result is obtained, and then the process is repeated for each known target type. This net-
work has two top level hypotheses: Target and Other. The "Target" hypothesis represents

a known target type (which is perfectly described when there is no error between the
observed evidence and the expected description). The "Other" hypothesis represents ran-
domness where all of the errors are equally likely. A (TIO) network will be referred to
here as Ti-module, for i'th ship class.

The advantage of using this approach to solving the ship classification problem is
that we now obtain two pieces of information about each type of target:

1). We obtain a measure of how well the evidence matches the specific target type.
This means that we can look at the final belief of the network to understand if the
specific target being observed has been modified, or is somehow different from our
prototypical example stored in our target database (i.e., this makes it possible to
identify an unknown ship).

2). It is still possible to compare the beliefs in targetl vs target2, etc., to produce the
probability of (targetltarget2 ..... targetN) exactly as would have been calculated by
the network shown in Figure 2.

We will describe more details about using this approach later in the paper.

3. Network Structure

Under most conditions it is appropriate to use the belief at each node to compare
candidate targets. There are however, certain conditions which can cause the value of
belief to be other than what is desired. This condition occurs when there can be ambi-
guity associated with a single observation. When such ambiguity exists, the target
hypothesis that contains the largest number of possible alternatives which may match the
observation will be assigned the highest belief. While this assignment of belief is correct,
it is often found that the analyst is assured that the single observation can only match one
of the possible outcomes (i.e., by being confident that he can identify the observation as

3
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being a single one and definitely not two coincident observations that may appear as
one). When this happens, the result the analyst is expecting to see is one which compares
only the single best possible explanation for each hypothesis versus the best explanation 8
for each other hypothesis. In Bayesian belief networks this comparison of best explana-
tions is called bel* and is defined in [Pearl 1989] as follows:

bel* (x) = max p(x, w. le)
wz

where x stands for a variable, e stands for pieces of evidence and w, stands for the
instantiation of all variables, except x, on the belief network. Therefore, to find the best
explanation is to search for the variables' instantiations that maximize probability distri-
butions.

As an example of this phenomenon we propose the following example:

It is often possible to identify ship targets at night by noting the number and location
of portholes along the length of the target. Each porthole location is noted as a per-
centage location along the length of the target where the bow is 0% and the stern
represents 100%. A typical measurement can be made in 10% intervals.

This type of problem is hard to model using Bayesian belief networks because there
are multiple causes for being able to observe a porthole along the length of the ship. Not
only must a porthole be present at a specific location on the target for it to be observable,
but also the lights inside of the porthole must be illuminated. This means that for a given
target the first observed porthole location on any given night may be the first, second, or 0
third porthole present on that target, and so on for the remaining portholes.

The easiest way in which to model this problem is to relate the number of lights
observed with the number of lights on the target, and then exhaustively list out the possi-
ble permutations for how the lights on the target may be illuminated. This has the com-
binatorial behavior we mentioned earlier (Figure 4).

This network shown in Figure 4 is interesting because it demonstrates the behavior
and contrast of bel (i.e., the posterior probability evaluated from the Bayesian belief net-
work) and bel* for a given network node. When given an observation located at 30%
along the ships length, it is possible that this one observation can be caused by either the
1st or 2nd porthole on target-I, but could only be caused by the 1st porthole on target-2.
No porthole on target-3 can possibly match this observed porthole. If this single piece of
evidence is entered to the network the resultant belief at the Target node will correctly
reflect the fact that target-i is two times more likely than target-2 and Target-3 is
discounted altogether (i.e., bel=(0.66,0.33,0.0). By contrast, the value of bel* reflects
the fact that only one of the alternatives for target-I can possibly match the single obser-
vation. This causes the bel* result to equally distribute its belief between target-I and

target-2 (i.e. bel*={0.5, 0.5, 0.0)).

To make this example a little more interesting we now add an additional constraint.
It states that at night at a long distance it is often possible to confuse an open deck hatch

4
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for a porthole. If this happens, then it becomes possible to have the very first light obser-
vation actually be caused by an open deck hatch rather than the 1st, 2nd or 3rd porthole
on the target. To make this problem tractable we limit our example to only allow the
observation of one incorrect detection (i.e., we will only allow one deck hatch to be 0
observed).

As an additional constraint to the above problem, we will now allow the observation
of a single incorrect porthole location (i.e., we assume that an incorrect observation
is an open deck hatch) without wanting to penalize ourfinal belief. This means that
a single correct observation should yield the same resultant belief as observing one
correct observation and one incorrect observation. If we observe two incorrect
features, then this can be considered to be a non-coincidental error and we will
expect the resultant belief to exclude any target which has more than one incorrect
observation.

Figure 5 demonstrates a simple network that produces the desired result when the

bel* value of the top level node is queried. It is deigned to allow up to three observations
but allow one of them to be incorrect (i.e., not match anything on a target) without penal-
izing the bel* of that target. It is worthwhile to examine the bel* value response to the
piece of evidence shown in Figure 6. While the results demonstrate that the network
appears to return the desired results, it is necessary to re-examine the structural relation-
ships within this network to understand its scalability characteristics. For a simple
demonstration of this, take the problem shown above as an example. Let the possible
observations of porthole-i, porthole-2, porthole-3 and a phony object (e.g., hatch) be P

denoted as 1, 2, 3 and W, respectively. Exhaustively listing all of the possible outcomes
yields 23 of them:

1, 2, 3, W,

12, 13, 23, 1W, 2W, 3W, W1, W2, W3,

123, 12W, 13W, 23W, W12, W13, W23, 1W2, 1W3,2W3,

where one false detection of phony objects is allowed. This number is on the order of n!
(where n is the number of features plus the number of false alarms). If we were to build a
similarly structured network to solve a problem which would allow 6 observations and 2
false detections (which is more commensurate with real world conditions) then we would
need to exhaustively list out 846 possible outcomes! This becomes impractical. The cal-
culation of the number of possible outcomes is given in Appendix 2.

To overcome this problem we have designed a different network structure that is

intended to produce the same bel* as the above network, but without producing the scal-
ing characteristic noted above. We have called the approach Sequential Decomposition
(SD) (Figure 7). It works by imposing a different set of independence assumptions about
the observations than the above exhaustive approach. In this case the SD approach asso-
ciates each observation only with legitimate outcomes. SD imposes on evidence from

5
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subsequent observations the constraints obtained from understanding the preliminary rea-
soning about evidence for the first few observations. That is, constraints are explicitly
represented in SD structure. As a result of this, for the 3-porthole, 1-hatch problem we X

will have at most only seven possible ways of explaining observed pieces of evidence.
The seven possible outcomes are (Wi, 2, W2, 3, W, NO, 01 after two observations,
where NO denotes a constraint violation which can only be resolved by having this
observation "not observed" (NO), and 0 means all other ship classes. The conditional
probability of an evidence node, for example, 0 1 given 2 has the same value as 0 1 given
W2, because the "W" in W2 simply means the violation of constraints. Also, because of

the meanings of 0 and W, conditional probabilities of evidence nodes given 0 and W are
assumed to be equally distributed. Note that 3 stands for 13 and 23. Since bel* selects
the best instantiation, it's possible to compress multiple outcomes into one outcome and
preserve bel*. This property of bel* leads to the equivalence relationship between the 5

exhaustive and SD networks representations:

Property 1. The values of Bel*(Ti) (Bel*(O)) computed from Exhaustive and SD net-
works are equal.

That is, SD has desirable scaling properties for the computation of bel*. If we were to S

build a network to solve the 6 porthole two hatch problem then we would only need 16
hypotheses for each node. This number is much better than the 846 hypotheses required
in the exhaustive approach.

While this new network is designed to produce the same value of bel* for any given *
set of observations (Figure 8), it is important to note that the bel values for the 2 networks
are very different. This is because the independence assumptions for the evidence in each
network are different. Because of this, different ambiguities exist in the different net-
works and it is these different ambiguities that cause the bel values to differ.

4. Integration of Belief Values

The proposed approa..h is designed to work by instantiating a single network which
models only the structure of each target and utilizes evidence in the form of an error
measure. A separate bel* value is obtained for each target. The main advantage of using
this approach is that it is very easy to add or delete targets to a classification system using

this network because the network remains unaltered. The evidence added to this network
is in the form of an error between observation and specific target, and these error meas-
ures are computed by comparing the observed evidence to feature values stored in a data-
base. This means that simple adding or deleting database entries for targets is suffiient
for altering the number of targets in the system.

Computationally, because we really wish to enter evidence to this network in a form
which compares the probability that the observation is porthole-I, porthole-2, etc., on
each target, in our work we have created functions which compute these likelihoods by
comparing the observations to the database values. In doing this we have lost some of the

6



characteristic benefits of using bi-directional inferences but have gained a substantial
computational improvement.

X
In addition to the scalability advantages associated with this technique, it is easier to

understand and analyze the behavior of the network. This is because we explicitly model
the errors associated with each distinct feature type. These error values are always corn- 4

pared with a random distribution (our "Other" hypothesis) and it is thus much easier to
ensure that one feature type (or evidence source) does not carry more weight in the deci-
sion making process than another feature. This characteristic can often be a significant
problem when a system combines evidence from a variety of different and diverse
sources.

Given a set of ship classes {TI ....... T7), the final decision for ship classification is
based on integration of the results obtained from each individual module. Recall that,
from earlier discussion, our decision is based only on observed evidence. Therefore, pri-

ors of T7 and 0 are assumed to be equal (though this technique can easily deal with
unequal priors) in all Ti-modules. In a Ti-module, let the proportion of
bel* (Ti) : bel* (0) be denoted by ri. The final decision of Ti's is determined by compar-
ing those ri's. In fact, if bel*(O) remains unchanged in different Ti-modules, then the
ratio of r, : ...... r. is simply bel* (TI): ...... : bet* (T.), which is exactly the ratio without
using the (TIO) network model (i.e., all target classes are in one node). This property
follows from the fact that bel*(O) (Top=O) is invariant for all Ti-modules. The only
difference between Ti-modules is the conditional probabilities of evidence nodes, for
example, O given 01 -Perms node. Thus, in the presence of the same pieces of evi-

dence, to show the difference of values of bel*(O)'s, one only needs to consider the prior
of Top=O and conditional probabilities of evidence nodes given Oi-Perms in each T1-
module. The prior of Top=O is 0.5 for all Ti-module's. For any Oi-Perms=O, the condi-
tional probability of the evidence node Oi is equally distributed. Hence, the value of

bel*(O) does not change for any given module. Therefore, the ratio of bel* of T, is
theme. We describe this result in the following Property:

Property 2. The ratio of bel* of target classes, bel* (TI) : ...... : bel* (T,,;', computed with
using the (TIO) network model is equal to that computed without using the (TIO) net-
work model.

Proof. This property follows from the fact that bel*(O) (Top=O) is invariant for all T1-

modules. The only difference between Ti-modules is the conditional probabilities of evi-

dence nodes, for example, 0 1 given 0 1-Perms node. Thus, in the presence of the same

pieces of evidence, to show the difference of values of bel*(O)'s, one only needs to con-

sider the prior of Top=O and conditional probabilities of evidence nodes given O1-Perms
in each Ti-module. The prior of Top=O is 0.5 for ail T.-module's. For any 0-Perms=O,

the conditional probability of the evidence node Oi is equally distributed, i.e.,

p(e1 I Oi-Perms =0) = ..p (ej I Oi-Perms =0).. = p (e. 1 Oi-Perms =0),

• • •• O • •• "O
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where ej stands for j-th value of Oi. Hence, the value of bel*(O) does not change for any
given module. Therefore, the ratio of bel* of Ti is the same. #

XI

Hypotheses can be rejected if there is no strong supporting evidence for them. This

fact can be manifested from the ratio of bel*'s between T, and 0. That is, if the ratios of
Ti-modules are smaller than 1, for all i, then a statement such as "Target is something
else." can be concluded.

When several features are evaluated, the method to calculate bel* is carried out by
direct multiplication. The evaluation process is a recursive procedure which evaluates
each Ti-module in turn.

In our system many of the conditional probability links contain subjective estimates
of actual probability distributions. These distributions are based on both our analysis of
the results of a limited training cycle with real data and our own extrapolations -bout
how the limited training results may extend to the rest of the problem domain. We thus
encourage a hybrid data-driven and model-based approach to estimating the conditional
probability links.

I
When estimating our conditional probabilities we restrict our estimation processes

to the comparison of likelihoods for each possible hypothesis. This allows us the oppor-
tunity to better compare the impact of evidence applied to each different hypothesis and
thus allows us to compute the better balance of evidential weight noted above.

* 0

5. Conclusion

As with the previous studies, we have only been able to focus on a small portion of
the ship classification problem. By combining the various techniques described
separately in this and the previous papers, it is possible to create a target classification
system which has the characteristics required for the ship classification problem.

The combined techniques have been tested in a prototype system which performed
ship classification using approximately 15 features, for over 200 targets. While using 15

features wasn't normally enough to do complete classification, the final target ranking
based on the likelihood measures was very useful as a decision aid.
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Appendix 1: Informativeness Measure

We considered three alternatives for computing measures of informativeness.

Among the three proposed informativeness criteria, the entropy measure is recom-
mended, because it preserves an ordering property - closer nodes are more informative

than farther ones with respect to the top node - which greatly reduces the amount of 4

searching. This conclusion results from the following two facts.

Lemma 1. Let T, X and Y be three nodes in the chain network, where T is the top, X is

the descendant of T and Y is the descendant of X (Figure 9). Then, X is more informa-
tive than Y with respect to T based on entropy and square-error measure.

Proof.

9 entropy measure

For entropy measure, the following inequality holds:

H(T IX) = H(T IX,Y) > H(TIY) (Al)

* square-error measure

The square-error measure has the following property
S[Mp(t I X)t 12p (X) (A2)

x £

= [ (t Ix)t ] 2 p(x Iy)p(y) (A3)
YE X

For node Y,
[1p (t I y)t ]2p (y,) (A4)

Y

= E [ Ep(t Ix)p(x Iy)t 12 p(y) (A5)
Y' X I

By the property of convexity, i.e.,

( f(x)p(x Iy) )2  (A6)

< yy f(x) 2p(x ly)
X

it is easy to see that (A2) is greater than (A4).

The ordering property also holds for entropy measure on networks containing simple

loop structures.

Lemma 2. Let T, X, Z and Y be four nodes on a loop with T being the top, X, Z being

the intermediate and Y being the leaf node, respectively (Figure 10). Then, X is more

9



informative than Y with respect to T based on the entropy criterion, i.e.,
H (T I X)!5H/(T I Y).

Proof.

H(T IXZ) = H(T IXZY) <H(T IY) (A7)

(A 1) implies

H (XZ I T)+H (T)-H (XZ)!F.I (T I Y) (AS)

Based on the conditional independent relation, (AS) is equal to

H (X I T)+H (Z I T)-H (X,Z)+H (T):.H (T I Y) (A9)

Because H (X)+H (Z>H (X,Z), (A9) implies

H (X I T)+H (Z I T)-[H (X)+H (Z)]+H (T) .H (T I Y) (AlO)

[H(X I T)-H(X)+H(T)]+[H(Z IT)-H (Z)+H(T)]-H(T) •H(T I Y) (All)

From (All), either [H(X IT)-H(X)+H(T)] or [H(Z IT)-H(Z)+H(T)] must be less than
or equal to H(T IY), because both H(T IX) and H(T IZ) are greater than H(T). Assum-

ing that [H (X I T)-H (X)] is less than H (T I Y)-H (Y), i.e.,

H (X I T)-H (X)+H (T):.H (T I Y) (A 12)

Thus, by (A12),
H (T I X).5H (T I Y) (AI3)

The above result can be easily extended to any number of intermediate nodes.

Appendix 2: The Complexity of Representing 6/2 Problems

The number of possible outcomes for 6 observations with tolerance of 2 false detec-

tions is 846. Let W denote the false detection. This value is obtained as follows:

Case 1. #(W)=O.

If there is no false detection, the number of outcomes is 63, i.e.,

c6, + C6 + + C 6
4 + C 6

5 + C66.

Case 2. #(W)=- .

The outcomes for one false detection are equal to 249, i.e.,

1 +2fl C 6 1 +3nlC 6 2 +4nl C63 +

5 -f C 64 +6 Il C65.

Case 3. #(W)=2.

I0



In the case of two false detections, the number is 534, i.e.,

1 + (C2
2 + 2) n C6

1 + (C3
2 + 3)n C6 

2 +

(C42 + 4)n C6 3 + (C52 +5)n C 6
4 •

Summation of the three values yields 846. The maximum outcomes associated with a
single node in SD does not exceed 16. For instance, 03-Perms contains the following
outcomes:

w, ww 1, w2, ww2, 3, w3, ww3, ,4, w4, ww4, 5, w5, ww5, 6, w6, ww6.
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(Image)

(No-Target] [Target] 0

[Sensor Broken] [Only Sea] [Weather Cell] [Normal Target] (Large Target]

[Target Like] [Iceberg] [Platform] [Land] [Ice)

/\/(Ship) [Fixed Platform] [Floating Platform) [Debris] [Bouyj [Small Craft]

(Large) [Medium) [Corvette] [Lnding Platform) [Cornuercial/Auxj [Snail craft]

[Other) [Frigatee

Figure 1: Ship Classification Hierarchy
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TABLE 1. Target->Bow 4
Si S2 S3

<dS% 1.0 0.2 0.0

>.25 0.0 0.8 1.0

P(S.sL3) - (033A.03.•02"

(Table 1] Tre ble 2] TABLE 2. arget•-Stern

BOW stem S1 S2 S3

Romnd 0.7 0.1 0.2

Curved 0.3 0.8 0.1

Stright 0.0 0.1 0.7

Figure 2: This figure shows a simple network with 3 targets and 2 features.

Note that the representation of relationships between target and features

does not allow dynamic addition/removal of a target (i.e., a ship class) from

the network. ,
Si

T0 05

[Table 1] I ig b rble 2]

7 o1
Bow stern ITV .T i . 4:5 I

<•s'/.Ioi o.

sl-,ýýo 0.0 0. 3 t

network for s6;p clkss s5

Figure 3: This figure shows a (rIO) network for the same features as in Fig-

ure 2.
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F11

70 0 0

0 0 0 0

PI HI P2 P3

Possible Interpretations of Observing 2 Lights:

PI, P2
PI,P3
P2,P3
PI.HI
HI,P2
HIDP3

Figure 4: This figure illustrates the exhaustive porthole solution. The
target is assumed to have 3 portholes (P1,P2,P3) which may be illumi-
nated. In addition to the portholes, this target also has an open hatch
(IH1) which may appear to be like a porthole from a distance. The possi.
ble interpretations for observing 2 lights on the target are listed above.
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(1 •2,3,W,12,13,23,1W,2W,3W,W1,W2,W3,

(T, 0) 123,12W,13W,23WW13,W23,1W2,1W3,2W3)

PAll P-Alts +, 01,02,03)

( 1,,3,O) 1,,3,N0,) (2,3,WN,NO0)

1 02 0

For 01 the hypotheses is: (10%,20%,30% ..... 90%)
For 02,03 the hypotheses are: (10%,20%,30% ..... 90%,NOT-OBS)

Figure 5: This Figure illustrates the exhaustive 3W Network which
allows 3 observations and assumes the possibility of a single incorrect
observation.

If we observe a porthole which appears to be located about 20% of the length of the Tar-

get, our evidence might be the following likelihood ratios:

( 5:20:5:1:1:1:1:1:1 )

The resultant Bel* value for this evidence would be:

Be* (T) = 0.778

Bel* (0) = 0.222

Figure 6: An example bel* value obtained from adding evidence to the

exhaustlve-3W network shown In Figure 5
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(T,O) (1,2,3W)

11,2,3,W,0) 1,2,3,WNO)

Ol-Perms 2At

01 02-Perms T=07
IWi ,2,W2,W3,WNQ,0 N

02 03-Pernis
*W2,3,W3,WNO,2)

03

ReulsinFiue adfigure 8so tha e*T)adB*O)otiefrmDan

Figure 7: This alue illustrates the SD network for the 3W probem

With the sa piece of evidence given in Figure 6, i.e.,

the Bel* evaluated from SD network would be:

Bel* (T) = 0.778

Bel* (0) = 0.222

Results in Figure 6 and Figure 8 show that Bel*MT and Bel*(0) obtained from SD and

exhaustive networks are identical.

Figure 8: Bel* value as evaluated from the SD-3W network when given the

same evidence as in Figure 6
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Figure 9: This figure shows the chain structure of nodes T", X and Y.

Figure 10: This figure shows the lattice structure of nodes T, X, Y and Z.
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